Introduction to Parallel Ports

The Parallel Port is the most commonly used port for interfacing home made projects. This port will allow the input of up to 9 bits or the output of 12 bits at any one given time, thus requiring minimal external circuitry to implement many simpler tasks. The port is composed of 4 control lines, 5 status lines and 8 data lines. It's found commonly on the back of your PC as a D-Type 25 Pin female connector. There may also be a D-Type 25 pin male connector. This will be a serial RS-232 port and thus, is a totally incompatible port.
Parallel Port’s are standardized under the IEEE 1284 standard first released in 1994. This standard defines 5 modes of operation which are as follows:
1. Compatibility Mode.
2. Nibble Mode. (Protocol not Described in this Document)
3. Byte Mode. (Protocol not Described in this Document)
4. EPP Mode (Enhanced Parallel Port).
5. ECP Mode (Extended Capabilities Mode).
The aim was to design new drivers and devices which were compatible with each other and also backwards compatible with the Standard Parallel Port (SPP). Compatibility, Nibble & Byte modes use just the standard hardware available on the original Parallel Port cards while EPP & ECP modes require additional hardware which can run at faster speeds, while still being downwards compatible with the Standard Parallel Port.
Compatibility mode or "Centronics Mode" as it is commonly known, can only send data in the forward direction at a typical speed of 50 kbytes per second but can be as high as 150+ kbytes a second. In order to receive data, you must change the mode to either Nibble or Byte mode. Nibble mode can input a nibble (4 bits) in the reverse direction. E.g. from device to computer. Byte mode uses the Parallel's bi-directional feature (found only on some cards) to input a byte (8 bits) of data in the reverse direction.
Extended and Enhanced Parallel Ports use additional hardware to generate and manage handshaking. To output a byte to a printer (or anything in that matter) using compatibility mode, the software must,
1. Write the byte to the Data Port. 2. Check to see is the printer is busy. If the printer is busy, it will not accept any data, thus any data which is written will be lost. 3. Take the Strobe (Pin 1) low. This tells the printer that there is the correct data on the data lines. (Pins 2-9) 4. Put the strobe high again after waiting approximately 5 microseconds after putting the strobe low. (Step 3) This limits the speed at which the port can run at. The EPP & ECP ports get around this by letting the hardware check to see if the printer is busy and generate a strobe and /or appropriate handshaking. This means only one I/O instruction need to be performed, thus increasing the speed. These ports can output at around 1-2 megabytes per second. The ECP port also has the advantage of using DMA channels and FIFO buffers, thus data can be shifted around without using I/O instructions.
Hardware Properties
Below is a table of the "Pin Outs" of the D-Type 25 Pin connector and the Centronics 34 Pin connector. The D-Type 25 pin connector is the most common connector found on the Parallel Port of the computer, while the Centronics Connector is commonly found on printers. The IEEE 1284 standard however specifies 3 different connectors for use with the Parallel Port. The first one, 1284 Type A is the D-Type 25 connector found on the back of most computers. The 2nd is the 1284 Type B which is the 36 pin Centronics Connector found on most printers.
IEEE 1284 Type C however, is a 36 conductor connector like the Centronics, but smaller. This connector is claimed to have a better clip latch, better electrical properties and is easier to assemble. It also contains two more pins for signals which can be used to see whether the other device connected, has power. 1284 Type C connectors are recommended for new designs, so we can look forward on seeing these new connectors in the near future.

Pressure Valves

Valves are essential elements for controlling fluid system performance.

Virtually every fluid-power system requires some type of valve. In a hydraulic system, valves may control pressure, flow to an actuator, or quantity of flow permitted past a given point. Pneumatic valves are similar in design and operation to their hydraulic counterparts, although they may differ in construction.

Trends in the valve industry today include miniaturization of traditional designs and space-saving stackable valves. Compatibility with electronic controls means enhanced valve performance. Manufacturers are also turning to plastics to cut weight while improving lubricity and corrosion resistance. And advanced ceramics are being used for longer life and contamination resistance.

The primary concern in fluid-power circuits is to control either pressure level or the rate of flow. In theory, most flow-control valves could be used to control pressure. If orifice size, supply flow, and fluid viscosity are fixed, pressure remains constant; if any one of the three varies, pressure varies. Typically, however, such valves produce only the crudest kind of pressure control. For more accurate control, several types of pressure-control valves have been developed; they are categorized by the function to be performed. Counterbalance valves resist movement or balance the load being held by a cylinder or motor. These valves, by controlling pressure, provide excellent dynamic control. If they must hold the load for long periods, experts recommend that they be supplemented with a pilot check valve, which has better static-holding capabilities. Diverting valves (known in the mobile industry as "sequence valves") establish flow priorities within a circuit by using a pressure-actuated three-way valve with controls. The valve assembly directs pressurized fluid to a primary port until a predetermined pressure level is reached. At this value, flow is diverted from the primary outlet to a secondary outlet. Flow continues at the secondary as long as the pressure in the primary outlet is maintained. Pressures can be cascaded through several steps if needed. Sequence valves are used to determine the sequence of machine operations by sensing pressures other than maximum. These normally closed valves permit flow between inlet and output ports when the pressure reaches preset levels, and can be fitted with free-flow checks to permit flow in the opposite direction.
Many sequence valves have two or more spools or poppets that must be actuated before flow can pass through the valve. Typically, a signal shifts the control spool, ensuring that a certain minimum pressure has been developed in one part of the circuit before fluid can pass through another part. Reducing valves can limit pressure levels by restricting flow through a portion of a hydraulic system. In a normally open two-port unit, the reducing valve receives the signal from its low-pressure outlet. The valve is often biased by a spring or weight that may be supplemented with a pilot mechanism.

Reducing valves are used with suitable orifices to provide uniform pressure drop in flow-control valves. A check valve can be included for uncontrolled return flow through the valve, or pilot pressure can be used to hold the spool in the open positive to permit free return flow through the valve. Unloading valves provide free passage through a low-pressure area when a signal is applied to a pilot connection. In a typical application, unloading valves can be arranged to accept a signal from an accumulator. At a predetermined pressure, when the accumulator is charged to the specified level, the pump unloads to tank. The unloading pressure of this type of valve is commonly determined by a spring-loaded spool; the spring can be adjusted to vary unloading pressure. Alternatively, the valves can be controlled by application of a pilot pressure to hold the valve closed at pressures higher than that provided for by the spring. Safety valves pop open to avoid or eliminate abnormally high pressure peaks. They are designed strictly for fast action rather than pressure modulation, and they may well be subject to such problems as noise and chatter. They are typically nonadjustable, or have the pressure setting protected from tampering.

Essentially, safety valves perform the function of "fuses" in the system. In lieu of one, devices called hydraulic fuses also can be used. These quasi-valves use a disc or similar device that fractures at a preset pressure. They do not reset automatically and must be manually repaired after fracturing. Relief valves do the same job as safety valves, but they also smoothly and continuously modulate flow to keep pressure from exceeding a preset level. A relief valve is normally closed until the pressure level approaches a preset value. As system pressure rises, relief flow through a properly sized valve increases until the entire pump output passes through the valve. When system pressure drops, the valve closes smoothly and quietly.

Relief valves are available with simple direct actuation or with piloted operation. In addition, some electrically modulated relief valves perform an almost servo function to instantly modulate system pressure over a wide range of electrically signaled values.

Pneumatic Pressure Regulators

Pressure regulators, commonly called pressure-reducing valves, maintain constant output pressure in compressed-air systems regardless of variations in input pressure or output flow. Regulators are a special class of valve containing integral loading, sensing, actuating, and control components. Available in many configurations, they can be broadly classified as general purpose, special purpose, or precision.


General-purpose or utility regulators have flow and regulation characteristics that meet the requirements of most industrial compressed-air applications. Such regulators provide long service life and relative ease of maintenance at competitive prices. Precision regulators are for applications where regulated pressure must be controlled with close tolerances. Such regulators are used when the outcome of a process or the results of a test depend on accurate pressure control.
Special-purpose regulators often have a unique configuration or special materials for use with fluids other than compressed air. Regulator construction can range from simple to complex, depending on the intended application and the performance requirements.
However, the principle of operation and the loading, actuating, and control components are basic to all designs. Most regulators use simple wire coil springs to control the downstream pressure. Various size springs are used to permit regulation of the secondary pressure within specific ranges. Ideally, the required pressure should be in the center one-third of the rated outlet pressure range. At the lower end of the pressure range, the spring loses some sensitivity; at the high end, the spring nears its maximum capacity.
Regulators can use either a piston or diaphragm to sense downstream pressure. Diaphragms are generally more sensitive to pressure changes and react more quickly. They should be used where sensitive pressure settings are required (less than 0.04 psi). Pistons, on the other hand, are generally more rugged and provide a larger effective sensing area in a given size regulator. The functional difference between precision and general-purpose regulators is the degree of control accuracy of the output pressure. Output pressure accuracy is determined by the droop due to flow changes (regulator characteristics).
Pressure droop is most pronounced when the valve first opens. Factors contributing to droop are: load change with spring extension, effective area change with diaphragm displacement, and unbalance of area forces on the valve. The amount that output pressure changes with variations in supply pressure is called the regulation characteristic and is influenced by the ratio of diaphragm area to valve area and the degree of valve unbalance.
When selecting a pressure regulator, the important factors to consider are:

a. Normal line pressure.
b.Minimum and maximum regulated pressure required: Regulators can have a broad adjustment range and may require a specific spring or accessory to match the requirements. Also, minimum and maximum pressure should be within the middle third of the regulator range.
c. Maximum flow required at regulated pressure.
d. Pipe size: Not all regulators are available in all pipe sizes; note where adapters are required. Also, pipe size should be consistent with flow requirements.
e. Regulator adjustment frequency: A number of different adjusting methods are possible. When selecting a regulator, consider the location, application, adjusting method, and user.
f. Degree of pressure precision required.
g. Accessories or options include gages and panel mounting.
h. Environmental or fluid conditions that could be incompatible with materials used in the regulator.
i. Special features such as high relief or remote control.
j. The consequences of a regulator malfunction or failure: A damper or relief valve might be needed to protect personnel or equipment. Also, dead-end service or intermittent actuation may require positive valve shutoff, bleed units, or close control of pressure-relief points. Filters, lubricators, relief devices, and other system options should be considered in the selection process.

--from machine design

Fluid Transfer Valves

Fluid-handling devices are not basically concerned with the modulation of power, but only with the movement of fluid. Choosing a fluid-handling valve used to be easy, because each one had its own area of utility. For on-off, full, or no-flow requirements, ball and gate valves were favored; where tight shutoff was not required, butterfly and slide valves were used. As a result, beliefs were formed which may inhibit the selection of the best valve for a job.


Globe valves are used for throttling purposes and where positive shutoff is required, in sizes up to 6 in. Globe valves have a replaceable plug and seat, and a metal-to-metal seal. Other globe valves are available with elastomeric disc seals. The easy replacement of the plug and seat makes repair simple and inexpensive.


Pressure loss through a globe valve is somewhat high. Globe valves can be used at high pressures, but the higher the pressure, the more difficult the task of sealing around the stem and the greater the torque required to operate it. Other types of globe valves include:







Angle valves in which the fluid makes a 90° turn as it passes through the valve. Pressure loss through an angle valve is less than that through a conventional globe valve.














Y-valves that have a reduced pressure drop because the flow passes straight through the valve.








Needle valves which are functionally similar to globes, but they permit a finer adjustment of flow. The end of the stem is pointed like a needle and fits accurately into the needle seat. The seat is typically metal, although elastomeric seats have been used for very fine adjustments. Needle valves are used for very small, accurately adjustable flows.





Cock, or plug, valves are the oldest type of valve and still enjoy wide use for on-off service. Plug valves are made with both tapered and cylindrical plugs and in lubricated and nonlubricated models. The early forms of the cock valve used metal-to-metal, nonlubricated seals. Plug valves of this type are still used, but problems of sticking and galling limit their usefulness. These difficulties were largely overcome by the development of the lubricated-plug valve. In this valve, the lubricant is forced into the valve under pressure and is extruded between the plug face and the seat in the body. The lubricant prevents leakage between the plug and body, reduces friction and wear between the surfaces when the plug is turned, and also lifts the plug slightly to reduce the torque required to operate the valve.

A nonlubricated-plug valve may use a tapered plug with a mechanical lifting device that unseats the plug before it is turned to reduce the operating torque required. Or it may have an elastomeric sleeve or plug coating with a low coefficient of rubbing friction. Plug valves are available in sizes as large as 34 in. and in pressure ratings as high as 10,000 psi.


Ball valves represent a modification of the plug valves with a spherical instead of a tapered or cylindrical plug. Advances in materials, primarily polymers, plus improvements in design, have reduced the cost and extended applicability of ball valves.

Ball valves are relatively low in cost; they open and close with one-quarter turn of the handle; provide unimpeded flow through the full bore with minimum pressure drop; and their handle position shows immediately whether the valve is open or closed. In addition, they are easy to clean and repair, and the self-wiping action of the seat as the ball-plug rotates prevents any buildup of contamination to impede full closure of the valve.
Ball valves were developed as on-off valves without much attention given to throttling characteristics. However, design improvements have suited ball valves for some types of flow control, such as throttling the flow of air at differential pressures as high as 1,000 psi. The bulk of the control does not occur with a minor movement of the handle. Only 3% of total flow occurs at 10\#161> of handle travel, 10% at 30°, 30% at 56°, 50% at 70°, and 80% at 82° or 91% of full open. Thus, a ball valve has relatively good throttling characteristics at low flow.

The ball valve is somewhat similar in its operation to the butterfly in that a one-quarter turn opens or closes it, and the valve presents little resistance to the flow of fluid through it. It has two advantages over the butterfly, however. It is available in higher pressure ratings, and it provides a clear passage to the fluid. The passage through a butterfly valve is obstructed by the cross section of the disc and, as the pressure rating increases, so must the strength and thickness of the disc. The pressure drop through the same-sized ball valve is, therefore, less, and the benefit increases as the pressure rating of the valve increases.

Ball valves are available in pipe sizes to 42 in. and in pressure ratings to 7,500 psi. Many designs of ball valves are available to satisfy different requirements, including those with all metal seats and seals, and some that are completely lined with plastic.

Butterfly valves were once used for low-pressure service where complete shutoff was not necessary, and they were not used to modulate flow. Butterfly valves had the advantage of small size, light weight, simple design, and low-pressure drop. They also required only a one-quarter turn to change from closed to the fully open position.

Today, butterfly valves retain their traditional virtues. But capabilities have been greatly extended by offset discs and polymeric seals. These and other design innovations have enabled butterfly valves to be used for throttling, tight sealing, and withstanding pressures as high as 1,200 psi while retaining many traditional advantages.

A modern butterfly valve may include a pressure-tight resilient seat and an angularly offset disc. Other butterfly valve designs use a hard seat and an O-ring or piston ring around the disk to seal. Butterfly valves range in size from small to enormous, and are well suited for large flows of gases, liquids, or slurries.

Gate valves include wedge and double-disc valves. Both are typically used in a fully open or fully closed position because close regulation of flow is not possible.

A gate valve can be used for throttling only when the valve is in an almost shut position, where most of the flow reduction occurs. The small, crescent-shaped aperture causes a high flow velocity that can erode seat faces. Repeated movement of the disc near the point of closure against upstream pressure can create drag between the seat on the downstream side and may gall or score the seat faces. In addition, the high-velocity flowing liquid impinging against a partially open disc or wedge produces vibration that can damage seating surfaces and score the downstream side.

Nevertheless, a gate valve is excellent for service that requires either full or no flow. It has essentially no flow restriction when fully open. The flow area at the point of control is equal to the full cross-sectional area of the line. Because flow is straight through the line, pressure drop across a gate valve is only about 1/50 that of a globe valve of comparable size. However, globe valves are preferred if lines must be opened and closed frequently.

Slide valves consist of one or two discs, usually without a spreading mechanism. Fluid pressure on the disc presses its surface against the seat for closure. Some slide valves are made with soft seats to reduce the required manufacturing tolerances for a better seal. Slide valves can be made quite thin for jobs where space is a problem. Ordinarily, slide valves are used to control flows of low-pressure fluids where tight shutoff is not required. They can handle straight-through flow of gases, liquids, slurries, and fluidized solids. Ordinary slide valves are made in sizes from 2 in. and up, and are used at pressures to 400 psi.

The development of a seal that operates in shear has permitted production of special slide valves that operate at pressures to 10,000 psi while retaining the slide-valve advantages of quick opening or closing, unobstructed flow, and low operating torque. This seal principle permits use of erosion-resistant material in the port areas, so these valves show excellent throttling characteristics without undue seal wear.

Lift valves, commonly referred to as control valves, are generally constructed with two ports in parallel. They are made in sizes to 16 in., to give any required relationship between percent of opening (stem travel) and percent of full flow. Complete shutoff is almost impossible.

Diaphragm valves consist of a body, bonnet, and a flexible diaphragm that is pushed down by the stem to effect closure. The principal advantage of this type of valve is that the stem seal is eliminated. Diaphragm valves are used primarily for handling viscous fluids, slurries, or corrosive fluids. They can be used to throttle flow, but because of the large shutoff area, low-flow throttling characteristics are not good. The effective operating temperature range is limited by the properties of the diaphragm and run from -60 to 450°F. Pressure ratings run to 300 psi.

Fluid Power and Modulation - Flow Valves

Flow is controlled by either throttling or diverting it. Throttling involves reducing orifice size until all of the flow cannot pass through the orifice; bypassing involves routing part of the flow around the circuit so that the actuator receives only the portion needed to perform its task. If the flow inlet to an actuator is controlled, the circuit is said to be a "meter-in" system. If actuator outlet is controlled, it is called a "meter-out" circuit. When that part of the fluid being diverted to the reservoir or another part of the circuit is controlled, it is said to be a "bleed-off" system.
Noncompensated flow controls are simple valves that meter flow by restricting or throttling. The amount of flow that passes through an orifice and the pressure drop across it are directly related. As pressure increases, valve flow increases.
Common noncompensated valves are adjustable needle valves; flow through them varies with fluid viscosity and pressure across the valve. Usually, a needle valve is paired with a check valve that offers resistance to flow in one direction only. The combination permits flow to be adjusted in one direction, with free flow upon reverse. This type of two-valve combination is typically called an adjustable restrictor valve.
For some tasks, adjustability is either unimportant or potentially harmful. For such tasks, a fixed resistor valve can be used. Basically, it consists of a check valve with an orifice embodied in the valve. Some fixed restrictors make provision for disassembling the valve and changing the orifice; others have no such provision. In either type, the orifice is not changed during circuit operation so the valve is considered nonadjustable.
Both fixed and variable restrictor valves are simple, reliable, and inexpensive. They do not accurately control flow if load or viscosity changes. They can be used in any circuit, using any metering method. Experts recommend these noncompensated valves when accuracy is not important, when heat generation through power loss can be tolerated, and in such circuits as gravity lowering, where they can be used efficiently.
Pressure-compensated flow controls maintain nearly constant flow despite variations in circuit pressure. Like the noncompensated units, they incorporate a metering orifice. Flow pressure drop across this orifice is used to shift a balanced spool against a control spring. This spool movement is used to maintain a constant pressure drop across the orifice, which in turn, produces a constant flow. Pressure drop across the orifice is relatively low.
Check valves use a ball or poppet to prevent flow in one or more directions. In two-port valves, the ball or poppet is usually lightly spring loaded against one of the ports. In three-port valves, or shuttle valves, internal ridges guide the ball between ports.
Restrictive flow regulators work like an automatic variable orifice to control flow by throttling or restricting. Compensator spool movement blocks fluid flow through the valve. Flow passing through the metering orifice is accompanied by a pressure drop that is applied to each end of a balanced spool. The resulting force imbalance moves the spool against the control spring. Spool movement progressively blocks off flow area restricting or throttling flow through the valve.
Restrictive flow regulators are ideally suited to constant-pressure closed-center circuits and meter-out situations. Experts say they are the only pressure-compensated flow control that can be used in these applications. They are also recommended for gravity lowering devices where uniform lowering speed is required regardless of the load.
Bypass flow regulators control flow by diverting excess pump output to the reservoir. The same basic control orifice and compensator spool are used as in the restrictive flow regulator. But, instead of restricting flow through the valve, spool movement diverts or bypasses excess flow to the reservoir.
These regulators are used exclusively in variable-pressure open-center circuits, and only as a meter-in device. The resulting pump or supply pressure is slightly higher than that required to do the work, and automatically changes with load. Bypass flow regulators cannot be used as meter-out devices in any circuit or as meter-in devices in constant-pressure circuits. The ability of these valves to accept all flow supplied to them excludes them from these applications.
Combination bypass and restrictive flow regulators are a combination of the first two mentioned. They control flow by both restricting and bypassing, permitting full use of both regulated and bypass flow. Flow through a controlled orifice produces a pressure that shifts a compensating spool. Movement of the spool first uncovers the bypass-flow area. If bypass-circuit pressure is greater than regulated-circuit pressure, the spool moves farther to restrict or throttle the controlled flow. Regardless of pressures in either circuit, the combination flow regulator maintains a constant controlled flow. Full pump flow is at the higher of the two pressures.
Combination flow regulators are sometimes called "priority" valves. They establish priority flow to the control circuit and bypass to the secondary circuit only when the flow demands of the primary circuit are met. If pump supply is less than that required at the regulated port, all flow goes to the regulated port and none is diverted. This type of combination valve is ideally suited for meter-in speed control in open-center fixed-displacement pump circuits.

What is Industrial Ethernet?

The Ethernet network is a local-area network (LAN) protocol developed by Xerox Corporation in cooperation with DEC and Intel in 1976. Ethernet uses a bus or star topology, and supports data transfer rates of 10 Mbps (standard) or 100 Mbps (using the newer 100Base-T version).The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies the physical and lower software layers. Ethernet uses the CSMA/CD access method to handle simultaneous demands. It is one of the most widely implemented LAN standards.



OSI Reference Model
Developed by International Standards Organization (ISO) and stands for Open Systems Interconnection (OSI).It is designed to deal with connecting open systems to communicate with other systems.It consists of seven layers: a complex structure is partitioned into a number of independent functional layers.Each layer provides a set of services by performing some well-defined sets of functions. These services are provided by the layered-specific functional entities.Services at a layer can only be accessed from the layer immediately above it.Each layer uses only a well-defined set of services provided by the layer below.Protocols operate between "peer" entities in the different end systems (peer-to-peer protocol rules)

Advantages:
More manageable -Layer N is smaller and built only on Layer (N-1).Modularity - Different layers can be developed separately and each layer can be modified without affecting other layers as long as the interfaces with immediate layers are kept


Brief Description of model in Each Layer

Physical Layer
The physical layer is responsible for passing bits onto and receiving them from the communication channel.This layer has no understanding of the meaning of the bits, but deals with the electrical and mechanical characteristics of the signals and signalling methods.

Data Link Layer
Data link layer is responsible for both Point-to-Point Network and Broadcast Network data transmission. It hides characteristics of the physical layer (e.g. transmission hardware from the upper layers.It is also responsible to convert transmitted bits into frames It transmits the frames into an error free transmission line by adding error control and flow control.

Network Layer
Network layer is responsible for the controls of routers and subnets operation. It also handles the formation and routing of packets from source to destination with congestion control.

Transport Layer
Transport layer is a kind of software protocol to control packets delivery, crash recovery and transmission reliability between sender and receiver.Multiplexing between transport and network connections is possible.

Session Layer
Session layer provides dialogue control and token management.

Presentation Layer
When data is transmitted between different types of computer systems, the presentation layer negotiates and manages the way data is represented and encoded.Essentially a 'null' layer in case where such transformations are unnecessary.

Application Layer
This top layer defines the language and syntax that programs use to communicate with other programs. For example, a program in a client workstation uses commands to request data from a program in the server.
Common functions at this layer are opening, closing, reading and writing files, transferring files and e-mail messages, executing remote jobs and obtaining directory information about network resources.

About Us

We, the Industrial Automation and Mechatronics Portal team are dedicated professionals who are willing to share their knowledge and expertise in the field of controls, industrial automation and mechatronics and their related subject matter. We will be doing that by article postings, submissions, emails, and interactive VOIP operation.

It's been a dream of the team to help other enthusiasts and practitioners and thus creating a circle where not just knowledge, expertise, and wisdom abound but also a comfortable place and ambiance among others.

You, reader and practioner can contact the team either by commenting on the said subject matter or emailing us at d4rkhowl@yahoo.com.

Thank you!

IAM Team

Bachelor of Science in Industrial Automation and Mechatronics Now Offered!

The Mindanao State University - Iligan Institute of Technology is now offering Bachelor of Science in Industrial Automation and Mechatronics ( BSIAM) under the Industrial Automation and Controls Engineering Technology Department, School of Engineering Technology.

Industrial Automation and Controls Engineering Technology graduates of the said university located in Iligan City, Philippines can proceed to pursue this course and finish it in a year's time. Additional major subjects to be enrolled if you are an IACET graduate are the following:

- Industrial Networking and its corresponding Lab. units
- Advance Industrial Computer Programming and Application and its corresponding Lab. units
- Human Machine Interface and its corresponding Lab. units
- Mechatronics I and its corresponding Lab. units
- Specialized Applied Mathematics
- Mechatronics II and its corresponding Lab. units
- Advance Industrial Process Control and its corresponding Lab. units
- Research Projects

Engineering Technology graduates of other fields of engineering can pursue BSIAM if they take on the following bridging major subjects prior to the formal BSIAM schooling:

- PLC Programming
- Process Control Systems and Instrumentation
- Fluid Power Technology
- Kinematics and Basic Machining

Anyone interested for further information regarding this subject matter may contact:

Industrial Automation and Controls Engineering Technology Department (IACET)
School of Engineering Technology,
Mindanao State University - Iligan Institute of Technology
Tibanga, Iligan City
Philippines 9200